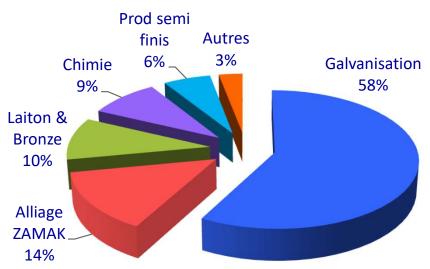


Befesa Zinc Recytech

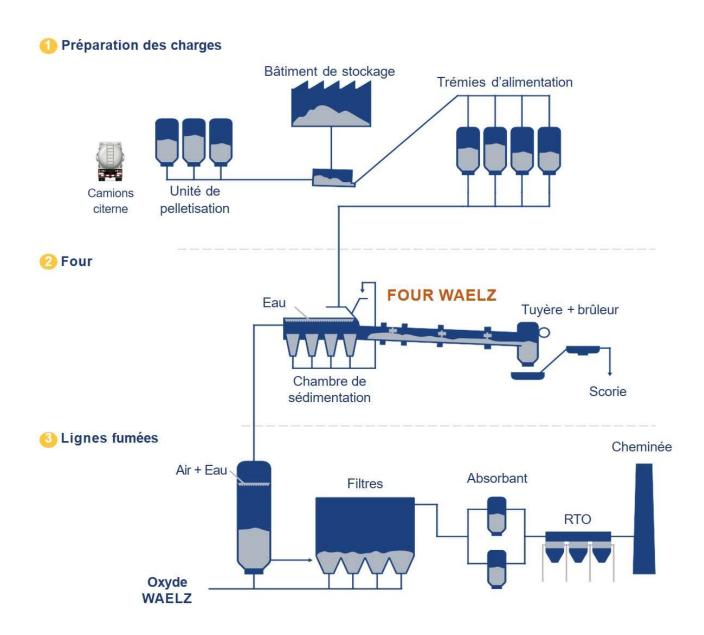
Maîtrise des rejets atmosphériques à BZR

Cas des COV NM

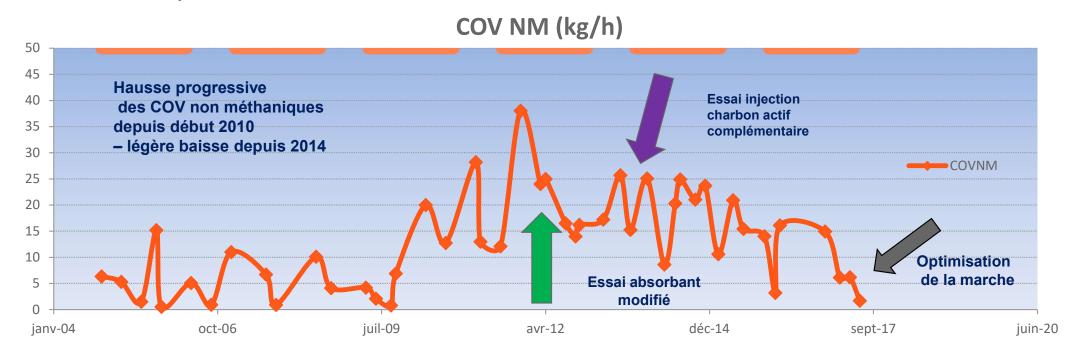

Agenda

- Présentation de Befesa Zinc Recytech.
- Emissions de COV NM
- Technologie mise en place pour abattement RTO
- Résultats et conséquences
- Conclusions

BEFESA


Installation classée de valorisation de déchets industriels riches en zinc (ICPE-AS)

- ✓ Implanté à Fouquières-Lez-Lens (62)
- ✓ Créé en 1991 sur un ancien site minier
- √ 100% BEFESA depuis juillet 2024


- Fonctionnement: feu continu (5x8)
- Effectif: 55 personnes
- CA (2024): 48 M€ (fortement lié au cours du zinc)
- Investissements: 19 M€ sur les 10 dernières années
- Superficie: 13.7 hectares
- Autorisation de traitement: 180 000 t de poussières d'aciérie et résidus zincifères

- Emissions de COV NM Situation en 2017
 - AP du 31/01/2001 et APC du 11/04/2005: respect des limites en concentration et flux horaire des COVNM dépassement sur flux annuel
 - Hausse des émissions de COVNM et COVT après le changement d'absorbant pour la captation Hg
 - Détection de Benzène dans les COVNM
 - BREF NFM imposant un abattement des COV T (<2020)

Il semble clair que ce soit lié au changement d'absorbant pour capter le mercure (2010)
Fluctuations importantes des teneurs => difficulté d'interprétations mais formation dans les gaz car cela ne vient pas des matières entrantes.

Nécessité de traiter l'ensemble des COV suite aux BREF NFM

Projet RTO

Mise en place d'une installation de traitement des COV totaux Regenerative Thermal Oxidiser (RTO)

Installation permettant de « brûler » la totalité des COV juste avant rejet en cheminée

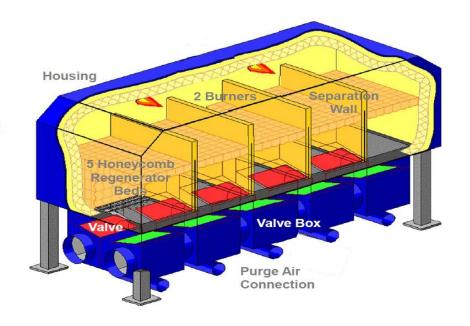
5-bed RTO-design

R - Regenerative

T - Thermal

O – Oxidation

 $C_x H_y + O_2 = CO_2 + H_2O$


- Brûleur au GN
- Injection directe de GN
- Ventilateur principal de 355 kW
- Equipements de sécurité
- Tuyauteries de connexion et vannes

3 000 000 € d'investissement 400 000 € de coûts opérationnels par an

Planning

Commande début 2017 Mise en route mi-2018

Projet RTO

Débit gaz à traiter	Nm³/h dry min	46.470
	Nm³/h dry moy	115.000
	Nm³/h dry max	140.000
Humidité	Vol% wet min.	8
	Vol% wet avg	10,8
	Vol% wet max.	12
Température	°C min	65
	°C moy	115
	°C max	135
Composition		
O 2	Vol% dry	17
CO ₂	Vol% dry	3,3
TVOC	mg C/Nm³ dry moy	780
	mg C/Nm³ dry max.	1.200
CO	Vol% dry moy	0,9
Poussières	mg/Nm³ dry moy	<1

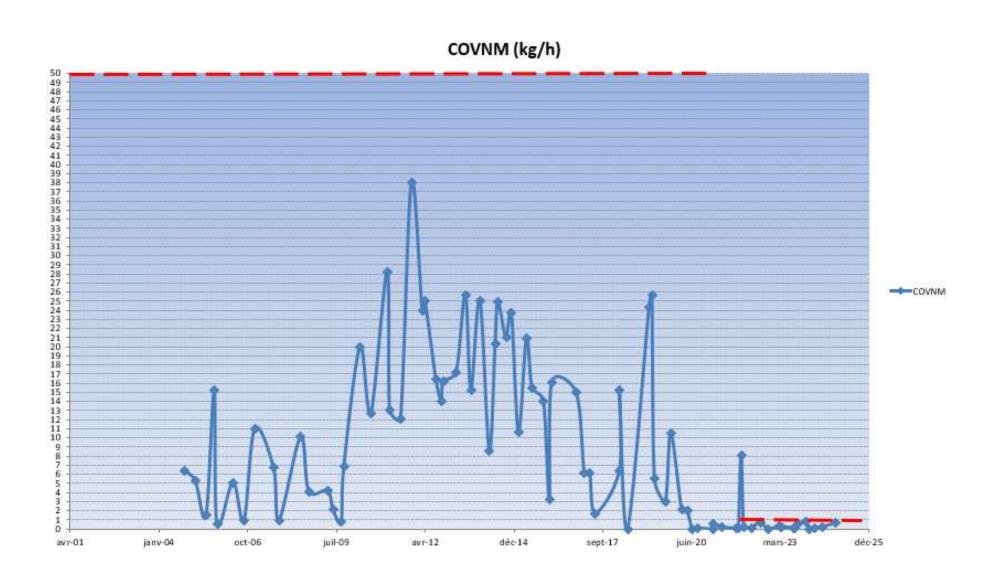
Caractérisation des gaz à traiter

Valeurs attendues et exigées à l'émission

	Unité	
СОТ	[mg/Nm³]	< 20
BTEX	[mg/Nm³]	< 2
СО	[mg/Nm³]	< 100
Niveau de	[db]	< 80 db
bruit		à 1 mètre



Projet RTO



Résultats

Composés Organiques Volatils Non Méthaniques (COVNM) :

Résultats

Impact du RTO sur activité et environnement

- Installation en queue de process: pas d'impact sur la marche du four mais équipement qui fait partie intégrante du process (RTO s'arrête, on arrête le four)
- Fonctionnement autotherme
- COVT < 20mg/Nm3
- Dioxines et CO en baisse
- T° des gaz émis plus importante: possibilité d'installer un échangeur de chaleur => projet de récupération de la chaleur fatale pour produire de l'électricité (quasi-autonomie)
- Hausse des NOx: Dépassement de nos limites quand le RTO fonctionne. Etude pour comprendre le fonctionnement => Baisse de la température en chambre de combustion (équilibre à trouver)

Conclusions

- L'évolution des normes nous poussent à nous améliorer mais pèsent sur la rentabilité
- •Besoin de temps et d'anticipation
- La résolution d'une problématique peut entraîner d'autres problèmes (Hg->COV->NOx)
- Importance de faire le benchmark des technologies
- Dialogue régulier avec DREAL et les parties prenantes
- Essayer d'en tirer avantage (récupération énergie)

BEFESA

Merci pour votre attention

Questions?

Frédéric HEYMANS frederic.heymans@befesa.com

Tel: 06,74,35,16,89